NOIDA PUBLIC SCHOOL
A-78, Sector-23, Noida
Affiliation No. 2130200
Session : 2023-2024

## WORKSHEET-1

## CLASS - VIII (MATHEMATICS) <br> CHAPTER-1: RATIONAL NUMBERS

Q.1:- Find ten rational numbers between $\frac{-2}{5}$ and $\frac{-3}{4}$.
Q.2:- Represent $\frac{-2}{7}, \frac{-5}{7}, \frac{3}{7}, \frac{9}{7}$ and $\frac{-9}{7}$ on the number line.
Q.3:- Find ten rational numbers between $\frac{3}{5}$ and $\frac{3}{4}$.
Q.4:- Find the product of additive inverse and multiplicative inverse of $\frac{\mathbf{- 1}}{\mathbf{3}}$.
Q.5:- The product of two rational numbers is -7 . If one of the number is -5 , find the other?
Q.6:- From a rope 40 m long, pieces of equal size are cut. If the length of one piece is $\frac{\mathbf{1 0}}{\mathbf{3}} \mathrm{m}$, find the number of such pieces.
Q.7:- Find the sum of additive inverse and multiplicative inverse of 7.
Q.8:- Find the product of additive inverse and multiplicative inverse of $\frac{-\mathbf{1}}{\mathbf{3}}$.
Q.9:- The product of two rational numbers is -7. If one of the number is -5 , find the other?
Q.10:- Complete the cross word puzzle using the clues given below :


## Across :-

1. Rational numbers are not closed under $\qquad$ .
2. In rational numbers $\qquad$ can distribute over addition and subtraction.
3. $\qquad$ is its own negative.
4. Multiplicative identity for rational numbers is $\qquad$ .
5. Between any two rational numbers there are $\qquad$ rational numbers.

## Down :-

6. $\qquad$ of two rational numbers always lie between those two rational numbers.
7. Additive inverse of a negative rational number is always $\qquad$ .
8. Multiplicative inverse is also known as $\qquad$ .
9. For three rational numbers $a, b$ and $c$.
10. Every rational number can be represented on $\qquad$ .
Q.11:- The associative property is applicable to:
(i) Addition and subtraction
(ii) Multiplication and division
(iii) Addition and Multiplication
(iv) Subtraction and Division
Q.12:- A number of the form $\mathbf{p} / \mathbf{q}$ is said to be a rational number, if
(a) p, q are integers
(b) $\mathrm{p}, \mathrm{q}$ are integers and $\mathbf{q} \neq \mathbf{0}$
(c) $\mathrm{p}, \mathrm{q}$ are integers and $\mathbf{p} \neq \mathbf{0}$
(d) $\mathrm{p}, \mathrm{q}$ are integers and $\mathbf{p} \neq \mathbf{0}$, also $\mathbf{q} \neq \mathbf{0}$
Q.13:- Zero (0) is.
$\begin{array}{ll}\text { (a) the identity for addition of rational numbers } & \text { (b) the identity for subtraction of rational numbers }\end{array}$
(c) the identity for multiplication of rational numbers
(d) the identity for division of rational numbers
